{ "id": "1305.1065", "version": "v2", "published": "2013-05-06T00:10:22.000Z", "updated": "2013-07-24T16:05:30.000Z", "title": "Geometric Properties of Gelfand's Problems with Parabolic Approach", "authors": [ "Sunghoon Kim", "Ki-Ahm Lee" ], "comment": "16 pages", "categories": [ "math.AP" ], "abstract": "We consider the asymptotic profiles of the nonlinear parabolic flows $$(e^{u})_{t}= \\La u+\\lambda e^u$$ to show the geometric properties of the following elliptic nonlinear eigenvalue problems known as a Gelfand's problem: \\begin{equation*} \\begin{split} \\La \\vp &+ \\lambda e^{\\vp}=0, \\quad \\vp>0\\quad\\text{in $\\Omega$}\\\\ \\vp&=0\\quad\\text{on $\\Omega$} \\end{split} \\end{equation*} posed in a strictly convex domain $\\Omega\\subset\\re^n$. In this work, we show that there is a strictly increasing function $f(s)$ such that $f^{-1}(\\vp(x))$ is convex for $0<\\lambda\\leq\\lambda^{\\ast}$, i.e., we prove that level set of $\\vp$ is convex. Moreover, we also present the boundary condition of $\\vp$ which guarantee the $f$-convexity of solution $\\vp$.", "revisions": [ { "version": "v2", "updated": "2013-07-24T16:05:30.000Z" } ], "analyses": { "keywords": [ "gelfands problem", "geometric properties", "parabolic approach", "elliptic nonlinear eigenvalue problems", "nonlinear parabolic flows" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1305.1065K" } } }