{ "id": "1305.0993", "version": "v1", "published": "2013-05-05T09:08:46.000Z", "updated": "2013-05-05T09:08:46.000Z", "title": "Sofic profile and computability of Cremona groups", "authors": [ "Yves Cornulier" ], "comment": "20 pages, no figure", "journal": "Michigan Math. J. 62(4) (2013) 823-841", "doi": "10.1307/mmj/1387226167", "categories": [ "math.GR", "math.AG" ], "abstract": "In this paper, we show that Cremona groups are sofic. We actually introduce a quantitative notion of soficity, called sofic profile, and show that the group of birational transformations of a d-dimensional variety has sofic profile at most polynomial of degree d. We also observe that finitely generated subgroups of the Cremona group have a solvable word problem. This provides examples of finitely generated groups with no embeddings into any Cremona group, answering a question of S. Cantat.", "revisions": [ { "version": "v1", "updated": "2013-05-05T09:08:46.000Z" } ], "analyses": { "subjects": [ "14E07", "20B99", "20F10", "12E20" ], "keywords": [ "cremona group", "sofic profile", "computability", "d-dimensional variety", "solvable word problem" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1305.0993C" } } }