{ "id": "1305.0867", "version": "v1", "published": "2013-05-04T02:01:08.000Z", "updated": "2013-05-04T02:01:08.000Z", "title": "Algebraic independence of multipliers of periodic orbits in the space of polynomial maps of one variable", "authors": [ "Igors Gorbovickis" ], "categories": [ "math.DS" ], "abstract": "We consider a space of complex polynomials of degree $n\\ge 3$ with $n-1$ distinguished periodic orbits. We prove that the multipliers of these periodic orbits considered as algebraic functions on that space, are algebraically independent over the field of complex numbers.", "revisions": [ { "version": "v1", "updated": "2013-05-04T02:01:08.000Z" } ], "analyses": { "subjects": [ "37F10" ], "keywords": [ "algebraic independence", "polynomial maps", "multipliers", "complex polynomials", "complex numbers" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1305.0867G" } } }