{ "id": "1305.0577", "version": "v1", "published": "2013-05-02T20:53:00.000Z", "updated": "2013-05-02T20:53:00.000Z", "title": "Squares and difference sets in finite fields", "authors": [ "Christine Bachoc", "Imre Z. Ruzsa", "Mate Matolcsi" ], "comment": "6 pages", "categories": [ "math.CO", "math.NT" ], "abstract": "For infinitely many primes $p=4k+1$ we give a slightly improved upper bound for the maximal cardinality of a set $B\\subset \\ZZ_p$ such that the difference set $B-B$ contains only quadratic residues. Namely, instead of the \"trivial\" bound $|B|\\leq \\sqrt{p}$ we prove $|B|\\leq \\sqrt{p}-1$, under suitable conditions on $p$. The new bound is valid for approximately three quarters of the primes $p=4k+1$.", "revisions": [ { "version": "v1", "updated": "2013-05-02T20:53:00.000Z" } ], "analyses": { "subjects": [ "05C69", "11T06" ], "keywords": [ "difference set", "finite fields", "upper bound", "maximal cardinality", "quadratic residues" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1305.0577B" } } }