{ "id": "1305.0035", "version": "v1", "published": "2013-04-30T21:56:58.000Z", "updated": "2013-04-30T21:56:58.000Z", "title": "Computing the residue of the Dedekind zeta function", "authors": [ "Karim Belabas", "Eduardo Friedman" ], "comment": "16 pages", "categories": [ "math.NT" ], "abstract": "Assuming the Generalized Riemann Hypothesis, Bach has shown that one can calculate the residue of the Dedekind zeta function of a number field K by a clever use of the splitting of primes p < X, with an error asymptotically bounded by 8.33 log D_K/(\\sqrt{X}\\log X), where D_K is the absolute value of the discriminant of K. Guided by Weil's explicit formula and still assuming GRH, we make a different use of the splitting of primes and thereby improve Bach's constant to 2.33. This results in substantial speeding of one part of Buchmann's class group algorithm.", "revisions": [ { "version": "v1", "updated": "2013-04-30T21:56:58.000Z" } ], "analyses": { "subjects": [ "11R42", "11Y40" ], "keywords": [ "dedekind zeta function", "buchmanns class group algorithm", "weils explicit formula", "absolute value", "generalized riemann hypothesis" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1305.0035B" } } }