{ "id": "1304.7442", "version": "v2", "published": "2013-04-28T08:12:08.000Z", "updated": "2013-06-12T16:10:11.000Z", "title": "Von Neumann entropy and majorization", "authors": [ "Yuan Li", "Paul Busch" ], "comment": "Version 2 contains some corrections and linguistic improvements", "journal": "Journal of Mathematical Analysis and Applications 408, 384-393 (2013)", "doi": "10.1016/j.jmaa.2013.06.019", "categories": [ "math-ph", "math.MP", "quant-ph" ], "abstract": "We consider the properties of the Shannon entropy for two probability distributions which stand in the relationship of majorization. Then we give a generalization of a theorem due to Uhlmann, extending it to infinite dimensional Hilbert spaces. Finally we show that for any quantum channel $\\Phi$, one has $S(\\Phi(\\rho))=S(\\rho)$ for all quantum states $\\rho$ if and only if there exists an isometric operator $V$ such that $\\Phi(\\rho)=V\\rho V^*$.", "revisions": [ { "version": "v2", "updated": "2013-06-12T16:10:11.000Z" } ], "analyses": { "keywords": [ "von neumann entropy", "majorization", "infinite dimensional hilbert spaces", "probability distributions", "isometric operator" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1304.7442L" } } }