{ "id": "1304.7099", "version": "v1", "published": "2013-04-26T09:04:28.000Z", "updated": "2013-04-26T09:04:28.000Z", "title": "Simple groups and the number of countable models", "authors": [ "Predrag Tanović" ], "comment": "Submitted to Achive for Mathematical Logic", "journal": "Archive for Mathematical Logic vol 52 (2013) pp.779-791", "doi": "10.1007/s00153-013-0343-x", "categories": [ "math.LO" ], "abstract": "Let $T$ be a complete, superstable theory with fewer than $2^{\\aleph_{0}}$ countable models. Assuming that generic types of infinite, simple groups definable in $T^{eq}$ are sufficiently non-isolated we prove that $\\omega^{\\omega}$ is the strict upper bound for the Lascar rank of $T$.", "revisions": [ { "version": "v1", "updated": "2013-04-26T09:04:28.000Z" } ], "analyses": { "subjects": [ "03C45" ], "keywords": [ "countable models", "strict upper bound", "generic types", "lascar rank", "simple groups definable" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1304.7099T" } } }