{ "id": "1304.6995", "version": "v1", "published": "2013-04-25T19:55:00.000Z", "updated": "2013-04-25T19:55:00.000Z", "title": "Spectral Analysis of hypoelliptic random walks", "authors": [ "Gilles Lebeau", "Laurent Michel" ], "doi": "10.1017/S1474748014000073", "categories": [ "math.AP", "math.PR" ], "abstract": "We study the spectral theory of a reversible Markov chain associated to a hypoelliptic random walk on a manifold M. This random walk depends on a parameter h which is roughly the size of each step of the walk. We prove uniform bounds with respect to h on the rate of convergence to equilibrium, and the convergence when h goes to zero to the associated hypoelliptic diffusion.", "revisions": [ { "version": "v1", "updated": "2013-04-25T19:55:00.000Z" } ], "analyses": { "keywords": [ "hypoelliptic random walk", "spectral analysis", "random walk depends", "spectral theory", "reversible markov chain" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1304.6995L" } } }