{ "id": "1304.6887", "version": "v1", "published": "2013-04-25T12:09:04.000Z", "updated": "2013-04-25T12:09:04.000Z", "title": "Positive Integer Solutions of the Pell Equation $x^{2}-dy^{2}=N,$ $% d\\in \\left\\{k^{2}\\pm 4,\\text{}k^{2}\\pm 1\\right\\} $ and $N\\in \\left\\{\\pm 1,\\pm 4\\right\\}", "authors": [ "Refik Keskin", "Merve Güney" ], "categories": [ "math.NT" ], "abstract": "Let $\\ k$ be a natural number and $d=k^{2}\\pm 4$ or $k^{2}\\pm 1$. In this paper, by using continued fraction expansion of $\\sqrt{d},$ we find fundamental solution of the equations $x^{2}-dy^{2}=\\pm 1$ and we get all positive integer solutions of the equations $x^{2}-dy^{2}=\\pm 1$ in terms of generalized Fibonacci and Lucas sequences. Moreover, we find all positive integer solutions of the equations $x^{2}-dy^{2}=\\pm 4$ in terms of generalized Fibonacci and Lucas sequences. Although some of the results are well known, we think our method is elementary and different from the others.", "revisions": [ { "version": "v1", "updated": "2013-04-25T12:09:04.000Z" } ], "analyses": { "subjects": [ "11B37", "11B39", "11B50", "11B99", "11A55" ], "keywords": [ "positive integer solutions", "pell equation", "lucas sequences", "generalized fibonacci", "continued fraction expansion" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1304.6887K" } } }