{ "id": "1304.6199", "version": "v2", "published": "2013-04-23T08:09:50.000Z", "updated": "2013-07-17T10:49:13.000Z", "title": "Riesz transforms and multipliers for the Bessel-Grushin operator", "authors": [ "VĂ­ctor Almeida", "Jorge J. Betancor", "Alejandro J. Castro", "Kishin Sadarangani" ], "comment": "33 pages", "categories": [ "math.CA" ], "abstract": "We establish that the spectral multiplier $\\frak{M}(G_{\\alpha})$ associated to the differential operator $$ G_{\\alpha}=- \\Delta_x +\\sum_{j=1}^m{{\\alpha_j^2-1/4}\\over{x_j^2}}-|x|^2 \\Delta_y \\; \\text{on} (0,\\infty)^m \\times \\R^n,$$ which we denominate Bessel-Grushin operator, is of weak type $(1,1)$ provided that $\\frak{M}$ is in a suitable local Sobolev space. In order to do this we prove a suitable weighted Plancherel estimate. Also, we study $L^p$-boundedness properties of Riesz transforms associated to $G_{\\alpha}$, in the case $n=1$.", "revisions": [ { "version": "v2", "updated": "2013-07-17T10:49:13.000Z" } ], "analyses": { "subjects": [ "42C10", "43A90" ], "keywords": [ "riesz transforms", "denominate bessel-grushin operator", "suitable local sobolev space", "boundedness properties", "differential operator" ], "note": { "typesetting": "TeX", "pages": 33, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1304.6199A" } } }