{ "id": "1304.6003", "version": "v2", "published": "2013-04-22T16:12:51.000Z", "updated": "2013-05-06T13:56:26.000Z", "title": "Poisson and Hochschild cohomology and the semiclassical limit", "authors": [ "Matthew Towers" ], "comment": "Comments to m.towers@kent.ac.uk welcome", "categories": [ "math.RT", "math.QA" ], "abstract": "Let $B$ be a quantum algebra possessing a semiclassical limit $A$. We show that under certain hypotheses $B^e$ can be thought of as a deformation of the Poisson enveloping algebra of $A$, and we give a criterion for the Hochschild cohomology of $B$ to be a deformation of the Poisson cohomology of $A$ in the case that $B$ is Koszul. We verify that condition for the algebra of $2\\times 2$ quantum matrices and calculate its Hochschild cohomology and the Poisson cohomology of its semiclassical limit.", "revisions": [ { "version": "v2", "updated": "2013-05-06T13:56:26.000Z" } ], "analyses": { "subjects": [ "16E40", "17B63", "20G42" ], "keywords": [ "hochschild cohomology", "semiclassical limit", "poisson cohomology", "quantum matrices", "deformation" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1304.6003T" } } }