{ "id": "1304.5458", "version": "v1", "published": "2013-04-19T16:02:07.000Z", "updated": "2013-04-19T16:02:07.000Z", "title": "Classification of simple $W_n$-modules with finite-dimensional weight spaces", "authors": [ "Yuly Billig", "Vyacheslav Futorny" ], "categories": [ "math.RT" ], "abstract": "We classify all simple $W_n$-modules with finite-dimensional weight spaces. Every such module is either of a highest weight type or is a quotient of a module of tensor fields on a torus, which was conjectured by Eswara Rao. This generalizes the classical result of Mathieu on simple weight modules for the Virasoro algebra. In our proof of the classification we construct a functor from the category of cuspidal $W_n$-modules to the category of $W_n$-modules with a compatible action of the algebra of functions on a torus. We also present a new identity for certain quadratic elements in the universal enveloping algebra of $W_1$, which provides important information about cuspidal $W_1$-modules.", "revisions": [ { "version": "v1", "updated": "2013-04-19T16:02:07.000Z" } ], "analyses": { "subjects": [ "17B10", "17B66" ], "keywords": [ "finite-dimensional weight spaces", "classification", "highest weight type", "simple weight modules", "eswara rao" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1304.5458B" } } }