{ "id": "1304.5198", "version": "v1", "published": "2013-04-18T17:36:21.000Z", "updated": "2013-04-18T17:36:21.000Z", "title": "Spectral Analysis by the Method of Consistent Constraints", "authors": [ "Nikolay Prokof'ev", "Boris Svistunov" ], "comment": "4 pages, 5 figures", "categories": [ "cond-mat.stat-mech", "cond-mat.str-el" ], "abstract": "Two major challenges of numeric analytic continuation---restoring the spectral density, $s(\\omega)$, from the corresponding Matsubara correlator, $g(\\tau)$---are (i) producing the most smooth/featureless answer for $s(\\omega)$ without compromising the error bars on $g(\\tau)$ and (ii) quantifying possible deviations of the produced result from the actual answer. We introduce the method of consistent constraints that solves both problems.", "revisions": [ { "version": "v1", "updated": "2013-04-18T17:36:21.000Z" } ], "analyses": { "keywords": [ "consistent constraints", "spectral analysis", "actual answer", "spectral density", "major challenges" ], "tags": [ "journal article" ], "publication": { "doi": "10.1134/S002136401311009X", "journal": "Soviet Journal of Experimental and Theoretical Physics Letters", "year": 2013, "month": "Aug", "volume": 97, "number": 11, "pages": 649 }, "note": { "typesetting": "TeX", "pages": 4, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013JETPL..97..649P" } } }