{ "id": "1304.5049", "version": "v1", "published": "2013-04-18T08:27:21.000Z", "updated": "2013-04-18T08:27:21.000Z", "title": "Maximum degree in minor-closed classes of graphs", "authors": [ "Omer Gimenez", "Dieter Mitsche", "Marc Noy" ], "comment": "24 pages, 3 figures", "categories": [ "math.CO" ], "abstract": "Given a class of graphs G closed under taking minors, we study the maximum degree \\Delta_n of random graphs from G with n vertices. We prove several lower and upper bounds that hold with high probability. Among other results, we find classes of graphs providing orders of magnitude for \\Delta_n not observed before, such us \\log n/ \\log \\log \\log n and \\log n/ \\log \\log \\log \\log n.", "revisions": [ { "version": "v1", "updated": "2013-04-18T08:27:21.000Z" } ], "analyses": { "keywords": [ "maximum degree", "minor-closed classes", "random graphs", "upper bounds", "high probability" ], "note": { "typesetting": "TeX", "pages": 24, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1304.5049G" } } }