{ "id": "1304.4791", "version": "v1", "published": "2013-04-17T12:22:59.000Z", "updated": "2013-04-17T12:22:59.000Z", "title": "Size of a 3-uniform linear hypergraph", "authors": [ "Niraj Khare" ], "comment": "20 pages", "categories": [ "math.CO" ], "abstract": "This article provides bounds on the size of a 3-uniform linear hypergraph with restricted matching number and maximum degree. In particular, we show that if a 3-uniform, linear family $\\mathcal{F}$ has maximum matching size $\\nu$ and maximum degree $\\Delta$ such that $\\Delta\\geq \\frac{23}{6}\\nu(1+\\frac{1}{\\nu-1})$, then $|\\mathcal{F}|\\leq \\Delta \\nu$.", "revisions": [ { "version": "v1", "updated": "2013-04-17T12:22:59.000Z" } ], "analyses": { "keywords": [ "linear hypergraph", "maximum degree", "restricted matching number" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1304.4791K" } } }