{ "id": "1304.4361", "version": "v2", "published": "2013-04-16T08:34:58.000Z", "updated": "2015-04-07T20:32:45.000Z", "title": "On arithmetic progressions on Edwards curves", "authors": [ "Enrique Gonzalez-Jimenez" ], "journal": "Acta Arithmetica 167 (2015), 117-132", "doi": "10.4064/aa167-2-2", "categories": [ "math.NT", "math.AG" ], "abstract": "Let m be a positive integer and a,q two rational numbers. Denote by AP_m(a,q) the set of rational numbers d such that a,a+q,...,a+(m-1)q form an arithmetic progression in the Edwards curve E_d:x^2+y^2=1+d x^2 y^2. We study the set AP_m(a,q) and we parametrize it by the rational points of an algebraic curve.", "revisions": [ { "version": "v1", "updated": "2013-04-16T08:34:58.000Z", "comment": null, "journal": null, "doi": null }, { "version": "v2", "updated": "2015-04-07T20:32:45.000Z" } ], "analyses": { "subjects": [ "11G05", "11G30", "11B25", "11D45", "14G05" ], "keywords": [ "arithmetic progression", "edwards curve", "rational numbers", "algebraic curve" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1304.4361G" } } }