{ "id": "1304.4295", "version": "v1", "published": "2013-04-15T23:34:12.000Z", "updated": "2013-04-15T23:34:12.000Z", "title": "Boundary blow up under Sobolev mappings", "authors": [ "Aapo Kauranen", "Pekka Koskela" ], "comment": "11 pages, submitted", "categories": [ "math.CA" ], "abstract": "We prove that for mappings $W^{1,n}(B^n, \\R^n),$ continuous up to the boundary, with modulus of continuity satisfying certain divergence condition, the image of the boundary of the unit ball has zero $n$-Hausdorff measure. For H\\\"older continuous mappings we also prove an essentially sharp generalized Hausdorff dimension estimate.", "revisions": [ { "version": "v1", "updated": "2013-04-15T23:34:12.000Z" } ], "analyses": { "keywords": [ "sobolev mappings", "boundary blow", "sharp generalized hausdorff dimension estimate", "essentially sharp generalized hausdorff dimension", "divergence condition" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1304.4295K" } } }