{ "id": "1304.3682", "version": "v4", "published": "2013-04-12T16:55:29.000Z", "updated": "2013-09-24T09:43:15.000Z", "title": "A properness result for degenerate Quadratic and Symplectic Bundles on a smooth projective curve", "authors": [ "Yashonidhi Pandey" ], "comment": "44 pages", "categories": [ "math.AG" ], "abstract": "Let $(V,q)$ be a vector bundle on a smooth projective curve $X$ together with a quadratic form $q: \\mathrm{Sym}^2(V) \\ra \\mathcal{O}_X$ (respectively symplectic form $q: \\Lambda^2V \\ra \\mathcal{O}_X$). Fixing the degeneracy locus of the quadratic form induced on $V/\\ker(q)$, we construct a coarse moduli of such objects. Further, we prove semi-stable reduction theorem for equivalence classes of such objects. In particular, the case when degeneracies of $q$ are higher than one is that of principal interest. We also provide a proof of properness of polystable orthogonal bundles without appealing to Bruhat-Tits theory in any characteristic.", "revisions": [ { "version": "v4", "updated": "2013-09-24T09:43:15.000Z" } ], "analyses": { "subjects": [ "14F22", "14D23", "14D20" ], "keywords": [ "smooth projective curve", "properness result", "symplectic bundles", "degenerate quadratic", "quadratic form" ], "note": { "typesetting": "TeX", "pages": 44, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1304.3682P" } } }