{ "id": "1304.2937", "version": "v1", "published": "2013-04-10T12:38:11.000Z", "updated": "2013-04-10T12:38:11.000Z", "title": "A compactness theorem in Finsler geometry", "authors": [ "Mihai Anastasiei", "Ioan Radu Peter" ], "comment": "12 pages, no figures", "categories": [ "math.DG" ], "abstract": "Let (M.F) be a complete Finsler manifold and P be a minimal and compact submanifold of M. Ric_k(x), x in M is a differential invariant that interpolates between the flag curvature and the Ricci curvature. We prove that if on any geodesic c(t) emanating orthogonally from P we have \\int_{0}^{\\infty}\\mathbf{Ric}_{k}(t)>0, then M is compact.", "revisions": [ { "version": "v1", "updated": "2013-04-10T12:38:11.000Z" } ], "analyses": { "subjects": [ "53C60" ], "keywords": [ "finsler geometry", "compactness theorem", "complete finsler manifold", "flag curvature", "ricci curvature" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1304.2937A" } } }