{ "id": "1304.2868", "version": "v1", "published": "2013-04-10T07:41:22.000Z", "updated": "2013-04-10T07:41:22.000Z", "title": "Restriction to symmetric subgroups of unitary representations of rank one semisimple Lie groups", "authors": [ "Birgit Speh", "Genkai Zhang" ], "categories": [ "math.RT" ], "abstract": "We consider the spherical complementary series of rank one Lie groups $H_n=\\SO_0(n, 1; \\mathbb F)$ for $\\mathbb F=\\mathbb R, \\mathbb C, \\mathbb H$. We prove that there exist finitely many discrete components in its restriction under the subgroup $H_{n-1}=\\SO_0(n-1, 1; \\mathbb F)$. This is proved by imbedding the complementary series into analytic continuation of holomorphic discrete series of $G_n=SU(n, 1)$, $SU(n, 1)\\times SU(n, 1)$ and $SU(2n, 2)$ and by the branching of holomorphic representations under the corresponding subgroup $G_{n-1}$.", "revisions": [ { "version": "v1", "updated": "2013-04-10T07:41:22.000Z" } ], "analyses": { "keywords": [ "semisimple lie groups", "unitary representations", "symmetric subgroups", "restriction", "holomorphic discrete series" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1304.2868S" } } }