{ "id": "1304.2839", "version": "v2", "published": "2013-04-10T03:54:24.000Z", "updated": "2014-02-27T00:34:22.000Z", "title": "Amenability and Unique Ergodicity of Automorphism Groups of Fraïssé Structures", "authors": [ "Andy Zucker" ], "categories": [ "math.LO", "math.CO", "math.DS", "math.PR" ], "abstract": "In this paper we provide a necessary and sufficient condition for the amenability of the automorphism group of Fra\\\"iss\\'e structures and apply it to prove the non-amenability of the automorphism groups of the directed graph $\\mathbf{S}(3)$ and the Boron tree structure $\\mathbf{T}$. Also, we provide a negative answer to the Unique Ergodicity-Generic Point problem of Angel-Kechris-Lyons [AKL]. By considering $\\mathrm{GL}(\\mathbf{V}_\\infty)$, where $\\mathbf{V}_\\infty$ is the countably infinite dimensional vector space over a finite field $F_q$, we show that the unique invariant measure on the universal minimal flow of $\\mathrm{GL}(\\mathbf{V}_\\infty)$ is not supported on the generic orbit.", "revisions": [ { "version": "v2", "updated": "2014-02-27T00:34:22.000Z" } ], "analyses": { "subjects": [ "37B05" ], "keywords": [ "automorphism group", "amenability", "countably infinite dimensional vector space", "unique ergodicity-generic point problem", "universal minimal flow" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1304.2839Z" } } }