{ "id": "1304.2449", "version": "v1", "published": "2013-04-09T02:32:15.000Z", "updated": "2013-04-09T02:32:15.000Z", "title": "On nonlinear Schrödinger equations with random potentials: existence and probabilistic properties", "authors": [ "Leandro Cioletti", "Lucas C. F. Ferreira", "Marcelo Furtado" ], "comment": "15 pages", "categories": [ "math.AP", "math.PR" ], "abstract": "In this paper we are concerned with nonlinear Schr\\\"odinger equations with random potentials. Our class includes continuum and discrete potentials. Conditions on the potential $V_{\\omega}$ are found for existence of solutions almost sure $\\omega $. We study probabilistic properties like central limit theorem and law of larger numbers for the obtained solutions by independent ensembles. We also give estimates on the expected value for the $L^{\\infty}$-norm of the solution showing how it depends on the size of the potential.", "revisions": [ { "version": "v1", "updated": "2013-04-09T02:32:15.000Z" } ], "analyses": { "subjects": [ "47B80", "60H25", "35J60", "35R60", "82B44", "47H10" ], "keywords": [ "nonlinear schrödinger equations", "random potentials", "central limit theorem", "study probabilistic properties", "discrete potentials" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1304.2449C" } } }