{ "id": "1304.2415", "version": "v1", "published": "2013-04-08T20:36:35.000Z", "updated": "2013-04-08T20:36:35.000Z", "title": "Monge-Ampere equation on exterior domains", "authors": [ "Jiguang Bao", "Haigang Li", "Lei Zhang" ], "comment": "26 pages", "categories": [ "math.AP" ], "abstract": "We consider the Monge-Amp\\`ere equation $\\det(D^2u)=f$ where $f$ is a positive function in $\\mathbb R^n$ and $f=1+O(|x|^{-\\beta})$ for some $\\beta>2$ at infinity. If the equation is globally defined on $\\mathbb R^n$ we classify the asymptotic behavior of solutions at infinity. If the equation is defined outside a convex bounded set we solve the corresponding exterior Dirichlet problem. Finally we prove for $n\\ge 3$ the existence of global solutions with prescribed asymptotic behavior at infinity. The assumption $\\beta>2$ is sharp for all the results in this article.", "revisions": [ { "version": "v1", "updated": "2013-04-08T20:36:35.000Z" } ], "analyses": { "subjects": [ "35J96", "35J67" ], "keywords": [ "exterior domains", "monge-ampere equation", "corresponding exterior dirichlet problem", "convex bounded set", "prescribed asymptotic behavior" ], "note": { "typesetting": "TeX", "pages": 26, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1304.2415B" } } }