{ "id": "1304.1861", "version": "v1", "published": "2013-04-06T06:44:15.000Z", "updated": "2013-04-06T06:44:15.000Z", "title": "A Common Generalization of the Theorems of Erdős-Ko-Rado and Hilton-Milner", "authors": [ "Wei-Tian Li", "Bor-Liang Chen", "Kuo-Ching Huang", "Ko-Wei Lih" ], "comment": "16 pages", "categories": [ "math.CO" ], "abstract": "Let $m$, $n$, and $k$ be integers satisfying $0 < k \\leq n < 2k \\leq m$. A family of sets $\\mathcal{F}$ is called an $(m,n,k)$-intersecting family if $\\binom{[n]}{k} \\subseteq \\mathcal{F} \\subseteq \\binom{[m]}{k}$ and any pair of members of $\\mathcal{F}$ have nonempty intersection. Maximum $(m,k,k)$- and $(m,k+1,k)$-intersecting families are determined by the theorems of Erd\\H{o}s-Ko-Rado and Hilton-Milner, respectively. We determine the maximum families for the cases $n = 2k-1, 2k-2, 2k-3$, and $m$ sufficiently large.", "revisions": [ { "version": "v1", "updated": "2013-04-06T06:44:15.000Z" } ], "analyses": { "subjects": [ "05D05" ], "keywords": [ "common generalization", "hilton-milner", "erdős-ko-rado", "maximum families", "nonempty intersection" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1304.1861L" } } }