{ "id": "1304.1043", "version": "v1", "published": "2013-04-03T18:36:29.000Z", "updated": "2013-04-03T18:36:29.000Z", "title": "Solutions of the Pell equations x^2-(a^2+2a)y^2=N via generalized Fibonacci and Lucas numbers", "authors": [ "Bilge Peker" ], "comment": "5 pages. arXiv admin note: substantial text overlap with arXiv:1303.1838", "categories": [ "math.NT" ], "abstract": "In this study, we find continued fraction expansion of sqrt(d) when d=a^2+2a where a is positive integer. We consider the integer solutions of the Pell equation x^2-(a^2+2a)y^2=N when N={-1,+1,-4,+4}. We formulate the n-th solution (x_{n},y_{n}) by using the continued fraction expansion. We also formulate the n-th solution (x_{n},y_{n}) via the generalized Fibonacci and Lucas sequences.", "revisions": [ { "version": "v1", "updated": "2013-04-03T18:36:29.000Z" } ], "analyses": { "subjects": [ "11D09", "11D79", "11D45", "11A55", "11B39", "11B50", "11B99" ], "keywords": [ "pell equation", "generalized fibonacci", "lucas numbers", "continued fraction expansion", "n-th solution" ], "note": { "typesetting": "TeX", "pages": 5, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1304.1043P" } } }