{ "id": "1304.1006", "version": "v2", "published": "2013-04-03T16:44:32.000Z", "updated": "2013-04-04T08:17:37.000Z", "title": "Extreme value theory for random walks on homogeneous spaces", "authors": [ "Maxim Sølund Kirsebom" ], "comment": "33 pages", "categories": [ "math.DS" ], "abstract": "In this paper we study extreme events for random walks on homogeneous spaces. We consider the following three cases. On the torus we study closest returns of a random walk to a fixed point in the space. For a random walk on the space of unimod- ular lattices we study extreme values for lengths of the shortest vector in a lattice. For a random walk on a homogeneous space we study the maximal distance a random walk gets away from an arbitrary fixed point in the space. We prove an exact limiting distribution on the torus and upper and lower bounds for sparse subsequences of random walks in the two other cases. In all three settings we obtain a logarithm law.", "revisions": [ { "version": "v2", "updated": "2013-04-04T08:17:37.000Z" } ], "analyses": { "keywords": [ "random walk", "extreme value theory", "homogeneous space", "fixed point", "study extreme values" ], "note": { "typesetting": "TeX", "pages": 33, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1304.1006S" } } }