{ "id": "1304.0754", "version": "v2", "published": "2013-04-02T19:59:36.000Z", "updated": "2014-04-19T02:13:52.000Z", "title": "The Phi-dimension: A new homological measure", "authors": [ "Sonia Fernandes", "Marcelo Lanzilotta", "Octavio Mendoza" ], "categories": [ "math.RT" ], "abstract": "K. Igusa and G. Todorov introduced two functions $\\phi$ and $\\psi,$ which are natural and important homological measures generalising the notion of the projective dimension. These Igusa-Todorov functions have become into a powerful tool to understand better the finitistic dimension conjecture. In this paper, for an artin $R$-algebra $A$ and the Igusa-Todorov function $\\phi,$ we characterise the $\\phi$-dimension of $A$ in terms either of the bi-functors $\\mathrm{Ext}^{i}_{A}(-, -)$ or Tor's bi-functors $\\mathrm{Tor}^{A}_{i}(-,-).$ Furthermore, by using the first characterisation of the $\\phi$-dimension, we show that the finiteness of the $\\phi$-dimension of an artin algebra is invariant under derived equivalences. As an application of this result, we generalise the classical Bongartz's result as follows: For an artin algebra $A,$ a tilting $A$-module $T$ and the endomorphism algebra $B=\\mathrm{End}_A(T)^{op},$ we have that $\\mathrm{Fidim}\\,(A)-\\mathrm{pd}\\,T\\leq \\mathrm{Fidim}\\,(B)\\leq \\mathrm{Fidim}\\,(A)+\\mathrm{pd}\\,T.$", "revisions": [ { "version": "v2", "updated": "2014-04-19T02:13:52.000Z" } ], "analyses": { "keywords": [ "artin algebra", "igusa-todorov function", "phi-dimension", "finitistic dimension conjecture", "endomorphism algebra" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1304.0754F" } } }