{ "id": "1304.0472", "version": "v2", "published": "2013-04-01T20:30:34.000Z", "updated": "2014-01-24T13:55:02.000Z", "title": "Partitioning bases of topological spaces", "authors": [ "Daniel T. Soukup", "Lajos Soukup" ], "comment": "26 pages, revised, submitted to CMUC", "categories": [ "math.GN" ], "abstract": "We investigate whether an arbitrary base for a dense-in-itself topological space can be partitioned into two bases. We prove that every base for a T_3 Lindel\\\"of topology can be partitioned into two bases while there exists a consistent example of a first countable, 0-dimensional, Hausdorff space of size continuum and weight \\omega_1 which admits a point countable base without a partition to two bases. Several related results are proved and the paper finishes with a list of open problems.", "revisions": [ { "version": "v2", "updated": "2014-01-24T13:55:02.000Z" } ], "analyses": { "subjects": [ "54A35", "03E35", "54A25" ], "keywords": [ "partitioning bases", "arbitrary base", "hausdorff space", "open problems", "point countable base" ], "note": { "typesetting": "TeX", "pages": 26, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1304.0472S" } } }