{ "id": "1304.0339", "version": "v3", "published": "2013-04-01T11:46:10.000Z", "updated": "2013-08-05T14:43:31.000Z", "title": "Minimax theorems for set-valued maps without continuity assumptions", "authors": [ "Monica Patriche" ], "comment": "22 pages", "categories": [ "math.OC" ], "abstract": "We introduce several classes of set-valued maps with generalized convexity. We obtain minimax theorems for set-valued maps which satisfy the introduced properties and are not continuous, by using a fixed point theorem for weakly naturally quasi-concave set-valued maps defined on a simplex in a topological vector space.", "revisions": [ { "version": "v3", "updated": "2013-08-05T14:43:31.000Z" } ], "analyses": { "keywords": [ "minimax theorems", "continuity assumptions", "fixed point theorem", "topological vector space", "generalized convexity" ], "note": { "typesetting": "TeX", "pages": 22, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1304.0339P" } } }