{ "id": "1304.0329", "version": "v1", "published": "2013-04-01T10:57:48.000Z", "updated": "2013-04-01T10:57:48.000Z", "title": "Explicit constructions of quasi-Monte Carlo rules for the numerical integration of high dimensional periodic functions", "authors": [ "Josef Dick" ], "journal": "J. Dick, Explicit constructions of quasi-Monte Carlo rules for the numerical integration of high dimensional periodic functions. SIAM J. Numer. Anal., 45, 2141--2176, 2007", "doi": "10.1137/060658916", "categories": [ "math.NA" ], "abstract": "In this paper we give explicit constructions of point sets in the $s$ dimensional unit cube yielding quasi-Monte Carlo algorithms which achieve the optimal rate of convergence of the worst-case error for numerically integrating high dimensional periodic functions. In the classical measure $P_{\\alpha}$ of the worst-case error introduced by Korobov the convergence is of $\\landau(N^{-\\min(\\alpha,d)} (\\log N)^{s\\alpha-2})$ for every even integer $\\alpha \\ge 1$, where $d$ is a parameter of the construction which can be chosen arbitrarily large and $N$ is the number of quadrature points. This convergence rate is known to be best possible up to some $\\log N$ factors. We prove the result for the deterministic and also a randomized setting. The construction is based on a suitable extension of digital $(t,m,s)$-nets over the finite field $\\integer_b$.", "revisions": [ { "version": "v1", "updated": "2013-04-01T10:57:48.000Z" } ], "analyses": { "subjects": [ "11K38", "11K45", "65C05", "65D30", "65D32" ], "keywords": [ "high dimensional periodic functions", "quasi-monte carlo rules", "explicit constructions", "unit cube yielding quasi-monte", "integrating high dimensional periodic" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1304.0329D" } } }