{ "id": "1304.0328", "version": "v1", "published": "2013-04-01T10:43:24.000Z", "updated": "2013-04-01T10:43:24.000Z", "title": "Walsh spaces containing smooth functions and quasi-Monte Carlo rules of arbitrary high order", "authors": [ "Josef Dick" ], "journal": "J. Dick, Walsh spaces containing smooth functions and quasi-Monte Carlo rules of arbitrary high order. SIAM J. Numer. Anal., 46, 1519--1553, 2008", "doi": "10.1137/060666639", "categories": [ "math.NA" ], "abstract": "We define a Walsh space which contains all functions whose partial mixed derivatives up to order $\\delta \\ge 1$ exist and have finite variation. In particular, for a suitable choice of parameters, this implies that certain Sobolev spaces are contained in these Walsh spaces. For this Walsh space we then show that quasi-Monte Carlo rules based on digital $(t,\\alpha,s)$-sequences achieve the optimal rate of convergence of the worst-case error for numerical integration. This rate of convergence is also optimal for the subspace of smooth functions. Explicit constructions of digital $(t,\\alpha,s)$-sequences are given hence providing explicit quasi-Monte Carlo rules which achieve the optimal rate of convergence of the integration error for arbitrarily smooth functions.", "revisions": [ { "version": "v1", "updated": "2013-04-01T10:43:24.000Z" } ], "analyses": { "subjects": [ "11K38", "11K45", "65C05", "42C10" ], "keywords": [ "walsh spaces containing smooth functions", "quasi-monte carlo rules", "arbitrary high order" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1304.0328D" } } }