{ "id": "1304.0159", "version": "v1", "published": "2013-03-31T06:22:32.000Z", "updated": "2013-03-31T06:22:32.000Z", "title": "Operator Entropy Inequalities", "authors": [ "A. Morassaei", "F. Mirzapour", "M. S. Moslehian" ], "comment": "11 pages; to appear in Colloq. Math", "categories": [ "math.FA", "math.OA" ], "abstract": "In this paper we investigate a notion of relative operator entropy, which develops the theory started by J.I. Fujii and E. Kamei [Math. Japonica 34 (1989), 341--348]. For two finite sequences $\\mathbf{A}=(A_1,...,A_n)$ and $\\mathbf{B}=(B_1,...,B_n)$ of positive operators acting on a Hilbert space, a real number $q$ and an operator monotone function $f$ we extend the concept of entropy by $$ S_q^f(\\mathbf{A}|\\mathbf{B}):=\\sum_{j=1}^nA_j^{1/2}(A_j^{-1/2}B_jA_j^{-1/2})^qf(A_j^{-1/2}B_jA_j^{-1/2})A_j^{1/2}\\,, $$ and then give upper and lower bounds for $S_q^f(\\mathbf{A}|\\mathbf{B})$ as an extension of an inequality due to T. Furuta [Linear Algebra Appl. 381 (2004), 219--235] under certain conditions. Afterwards, some inequalities concerning the classical Shannon entropy are drawn from it.", "revisions": [ { "version": "v1", "updated": "2013-03-31T06:22:32.000Z" } ], "analyses": { "subjects": [ "47A63", "15A42", "46L05", "47A30" ], "keywords": [ "inequality", "operator entropy inequalities", "operator monotone function", "linear algebra appl", "relative operator entropy" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1304.0159M" } } }