{ "id": "1303.7223", "version": "v3", "published": "2013-03-28T19:52:20.000Z", "updated": "2013-12-10T17:10:11.000Z", "title": "Integral bases for the universal enveloping algebras of map superalgebras", "authors": [ "Irfan Bagci", "Samuel Chamberlin" ], "comment": "To appear in the Journal of Pure and Applied Algebra", "categories": [ "math.RT", "math.RA" ], "abstract": "Let $\\mathfrak{g}$ be a finite dimensional complex simple classical Lie superalgebra and $A$ be a commutative, associative algebra with unity over $\\mathbb{C}$. In this paper we define an integral form for the universal enveloping algebra of the map superalgebra $\\mathfrak{g}\\otimes A$, and exhibit an explicit integral basis for this integral form.", "revisions": [ { "version": "v3", "updated": "2013-12-10T17:10:11.000Z" } ], "analyses": { "keywords": [ "universal enveloping algebra", "map superalgebra", "integral bases", "dimensional complex simple classical", "complex simple classical lie superalgebra" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1303.7223B" } } }