{ "id": "1303.6504", "version": "v1", "published": "2013-03-26T14:17:55.000Z", "updated": "2013-03-26T14:17:55.000Z", "title": "Nondegeneracy of critical points of the mean curvature of the boundary for Riemannian manifolds", "authors": [ "Marco Ghimenti", "Anna Maria Micheletti" ], "categories": [ "math.AP" ], "abstract": "Let $M$ be a compact smooth Riemannian manifold of finite dimension $n+1$ with boundary $\\partial M$and $\\partial M$ is a compact $n$-dimensional submanifold of $M$. We show that for generic Riemannian metric $g$, all the critical points of the mean curvature of $\\partial M$ are nondegenerate.", "revisions": [ { "version": "v1", "updated": "2013-03-26T14:17:55.000Z" } ], "analyses": { "keywords": [ "mean curvature", "critical points", "compact smooth riemannian manifold", "nondegeneracy", "generic riemannian metric" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1303.6504G" } } }