{ "id": "1303.6472", "version": "v1", "published": "2013-03-23T13:48:08.000Z", "updated": "2013-03-23T13:48:08.000Z", "title": "Criteria of ergodicity for $p$-adic dynamical systems in terms of coordinate functions", "authors": [ "Andrei Khrennikov", "Ekaterina Yurova" ], "categories": [ "math.DS", "math.NT", "math.PR" ], "abstract": "This paper is devoted to the problem of ergodicity of $p$-adic dynamical systems. Our aim is to present criteria of ergodicity in terms of coordinate functions corresponding to digits in the canonical expansion of $p$-adic numbers. The coordinate representation can be useful, e.g., for applications to cryptography. Moreover, by using this representation we can consider non-smooth $p$-adic transformations. The basic technical toolsare van der Put series and usage of algebraic structure (permutations) induced by coordinate functions with partially frozen variables. We illustrate the basic theorems by presenting concrete classes of ergodic functions.", "revisions": [ { "version": "v1", "updated": "2013-03-23T13:48:08.000Z" } ], "analyses": { "keywords": [ "adic dynamical systems", "coordinate functions", "ergodicity", "basic technical toolsare van der", "coordinate representation" ], "tags": [ "journal article" ], "publication": { "doi": "10.1016/j.chaos.2014.01.001", "journal": "Chaos Solitons and Fractals", "year": 2014, "month": "Mar", "volume": 60, "pages": 11 }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014CSF....60...11K" } } }