{ "id": "1303.6148", "version": "v2", "published": "2013-03-25T14:53:18.000Z", "updated": "2013-08-06T12:14:10.000Z", "title": "On the Radius of Analyticity of Solutions to the Cubic Szegö Equation", "authors": [ "Patrick Gerard", "Yanqiu Guo", "Edriss S. Titi" ], "categories": [ "math.AP" ], "abstract": "This paper is concerned with the cubic Szeg\\H{o} equation $$ i\\partial_t u=\\Pi(|u|^2 u), $$ defined on the $L^2$ Hardy space on the one-dimensional torus $\\mathbb T$, where $\\Pi: L^2(\\mathbb T)\\rightarrow L^2_+(\\mathbb T)$ is the Szeg\\H{o} projector onto the non-negative frequencies. For analytic initial data, it is shown that the solution remains spatial analytic for all time $t\\in (-\\infty,\\infty)$. In addition, we find a lower bound for the radius of analyticity of the solution. Our method involves energy-like estimates of the special Gevrey class of analytic functions based on the $\\ell^1$ norm of Fourier transforms (the Wiener algebra).", "revisions": [ { "version": "v2", "updated": "2013-08-06T12:14:10.000Z" } ], "analyses": { "subjects": [ "35B10", "35B65", "47B35" ], "keywords": [ "analyticity", "solution remains spatial analytic", "special gevrey class", "analytic initial data", "wiener algebra" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1303.6148G" } } }