{ "id": "1303.5959", "version": "v1", "published": "2013-03-24T15:20:27.000Z", "updated": "2013-03-24T15:20:27.000Z", "title": "Recovery of Paley-Wiener functions using scattered translates of regular interpolators", "authors": [ "Jeff Ledford" ], "comment": "12 pages, submitted to J. Approx. Theory", "journal": "Journal of Approximation Theory (2013), pp. 1-13", "doi": "10.1016/j.jat.2013.04.010", "categories": [ "math.FA" ], "abstract": "It has been shown that Paley-Wiener functions may be recovered from their values on a complete interpolating sequence. This paper explores the same phenomenon, and gives a sufficient condition on a function $\\phi(x)$, called an interpolator, so that scattered translates of this function may be used to interpolate and recover any given Paley-Wiener function.", "revisions": [ { "version": "v1", "updated": "2013-03-24T15:20:27.000Z" } ], "analyses": { "subjects": [ "42C99" ], "keywords": [ "paley-wiener function", "scattered translates", "regular interpolators", "sufficient condition", "complete interpolating sequence" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1303.5959L" } } }