{ "id": "1303.5218", "version": "v2", "published": "2013-03-21T10:22:51.000Z", "updated": "2013-04-06T09:03:13.000Z", "title": "On the 2-part of the Birch-Swinnerton-Dyer conjecture for elliptic curves with complex multiplication", "authors": [ "John Coates", "Minhyong Kim", "Zhibin Liang", "Chunlai Zhao" ], "categories": [ "math.NT" ], "abstract": "Given an elliptic curve E over Q with complex multiplication having good reduction at 2, we investigate the 2-adic valuation of the algebraic part of the L-value at 1 for a family of quadratic twists. In particular, we prove a lower bound for this valuation in terms of the Tamagawa number in a form predicted by the conjecture of Birch and Swinnerton-Dyer.", "revisions": [ { "version": "v2", "updated": "2013-04-06T09:03:13.000Z" } ], "analyses": { "subjects": [ "11G40" ], "keywords": [ "complex multiplication", "elliptic curve", "birch-swinnerton-dyer conjecture", "algebraic part", "quadratic twists" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1303.5218C" } } }