{ "id": "1303.5156", "version": "v2", "published": "2013-03-21T03:59:00.000Z", "updated": "2013-03-22T02:53:13.000Z", "title": "Choosability of the square of a planar graph with maximum degree four", "authors": [ "Daniel W. Cranston", "Rok Erman", "Riste Škrekovski" ], "comment": "14 pages, 6 figures; fixed typo", "categories": [ "math.CO" ], "abstract": "We study squares of planar graphs with the aim to determine their list chromatic number. We present new upper bounds for the square of a planar graph with maximum degree $\\Delta \\leq 4$. In particular $G^2$ is 5-, 6-, 7-, 8-, 12-, 14-choosable if the girth of $G$ is at least 16, 11, 9, 7, 5, 3 respectively. In fact we prove more general results, in terms of maximum average degree, that imply the results above.", "revisions": [ { "version": "v2", "updated": "2013-03-22T02:53:13.000Z" } ], "analyses": { "keywords": [ "planar graph", "maximum degree", "choosability", "maximum average degree", "list chromatic number" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1303.5156C" } } }