{ "id": "1303.4336", "version": "v1", "published": "2013-03-18T17:44:08.000Z", "updated": "2013-03-18T17:44:08.000Z", "title": "Supersaturation in the Boolean lattice", "authors": [ "Andrew P. Dove", "Jerrold R. Griggs", "Ross J. Kang", "Jean-Sébastien Sereni" ], "categories": [ "math.CO", "cs.DM" ], "abstract": "We prove a \"supersaturation-type\" extension of both Sperner's Theorem (1928) and its generalization by Erdos (1945) to k-chains. Our result implies that a largest family whose size is x more than the size of a largest k-chain free family and that contains the minimum number of k-chains is the family formed by taking the middle (k-1) rows of the Boolean lattice and x elements from the k-th middle row. We prove our result using the symmetric chain decomposition method of de Bruijn, van Ebbenhorst Tengbergen, and Kruyswijk (1951).", "revisions": [ { "version": "v1", "updated": "2013-03-18T17:44:08.000Z" } ], "analyses": { "keywords": [ "boolean lattice", "supersaturation", "symmetric chain decomposition method", "k-th middle row", "van ebbenhorst tengbergen" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1303.4336D" } } }