{ "id": "1303.4281", "version": "v1", "published": "2013-03-18T15:13:54.000Z", "updated": "2013-03-18T15:13:54.000Z", "title": "On representation of boundary integrals involving the mean curvature for mean-convex domains", "authors": [ "Yoshikazu Giga", "Giovanni Pisante" ], "categories": [ "math.AP" ], "abstract": "Given a mean-convex domain $\\Omega\\subset \\R^n$ with boundary of class $C^{2,1}$, we provide a representation formula for a boundary integral of the type \\[ \\int_{\\partial \\Omega} f(k(x)) \\, d\\mathcal{H}^{n-1} \\] where $k\\geq 0$ is the mean curvature of $\\partial \\Omega$ and $f$ is non-increasing and sufficiently regular, in terms of volume integrals and defect measure on the ridge set.", "revisions": [ { "version": "v1", "updated": "2013-03-18T15:13:54.000Z" } ], "analyses": { "keywords": [ "mean curvature", "mean-convex domain", "boundary integral", "representation formula", "volume integrals" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1303.4281G" } } }