{ "id": "1303.4225", "version": "v1", "published": "2013-03-18T12:18:14.000Z", "updated": "2013-03-18T12:18:14.000Z", "title": "Blowup of classical solutions for a class of 3-D quasilinear wave equations with small initial data", "authors": [ "Bingbing Ding", "Ingo Witt", "Huicheng Yin" ], "comment": "20 pages, 2 figures", "categories": [ "math.AP" ], "abstract": "This paper is concerned with the small smooth data problem for the 3-D nonlinear wave equation $\\partial_t^2u-\\left (1+u+\\p_t u\\right)\\Delta u=0$. This equation is prototypical of the more general equation $\\dsize\\sum_{i,j=0}^3g_{ij}(u, \\nabla u)\\partial_{ij}u=0$, where $x_0=t$ and $g_{ij}(u, \\nabla u)=c_{ij}+d_{ij}u+\\dsize\\sum_{k=0}^3e_{ij}^k\\partial_ku+O(|u|^2+|\\nabla u|^2)$ are smooth functions of their arguments, with $c_{ij}, d_{ij}$ and $e_{ij}^k$ being constants, and $d_{ij}\\neq0$ for some $(i,j)$; moreover, $\\dsize\\sum_{i,j,k=0}^3e_{ij}^k(\\partial_ku)\\p_{ij} u$ does not fulfill the null condition. For the 3-D nonlinear wave equations $\\partial_t^2u-\\left (1+u\\right)\\Delta u=0$ and $\\partial_t^2u-\\left (1+\\partial_t u\\right)\\Delta u=0$, H. Lindblad, S. Alinhac, and F. John proved and disproved, respectively, the global existence of small smooth data solutions. For radial initial data, we show that the small smooth data solution of $\\partial_t^2u-\\left(1+u+\\partial_t u\\right)\\Delta u=0$ blows up in finite time. The explicit expression of the asymptotic lifespan $T_{\\varepsilon}$ as $\\varepsilon\\to0^+$ is also given.", "revisions": [ { "version": "v1", "updated": "2013-03-18T12:18:14.000Z" } ], "analyses": { "subjects": [ "35L65", "35J70", "35R35" ], "keywords": [ "quasilinear wave equations", "small initial data", "small smooth data solution", "classical solutions", "nonlinear wave equation" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1303.4225D" } } }