{ "id": "1303.4032", "version": "v1", "published": "2013-03-17T04:56:39.000Z", "updated": "2013-03-17T04:56:39.000Z", "title": "Periodic billiard orbits of self-similar Sierpinski carpets", "authors": [ "Joe P. Chen", "Robert G. Niemeyer" ], "comment": "22 Figures", "categories": [ "math.DS" ], "abstract": "We identify a collection of periodic billiard orbits in a self-similar Sierpinski carpet billiard table. Based on a refinement of the result of Durand-Cartagena and Tyson regarding nontrivial line segments in a self-similar Sierpinski carpet, we construct what is called an eventually constant sequence of compatible periodic orbits of prefractal Sierpinski carpet billiard tables. The trivial limit of this sequence then constitutes a periodic orbit of a self-similar Sierpinski carpet billiard table. We also determine the corresponding translation surface for each prefractal billiard table, and show that the genera of a sequence of translation surfaces increase without bound. Various open questions and possible directions for future research are offered.", "revisions": [ { "version": "v1", "updated": "2013-03-17T04:56:39.000Z" } ], "analyses": { "keywords": [ "periodic billiard orbits", "self-similar sierpinski carpet billiard table", "prefractal sierpinski carpet billiard tables", "tyson regarding nontrivial line segments" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1303.4032C" } } }