{ "id": "1303.3167", "version": "v2", "published": "2013-03-13T14:21:44.000Z", "updated": "2013-03-14T03:15:28.000Z", "title": "On the vector bundles associated to irreducible representations of cocompact lattices of SL(2,C)", "authors": [ "Indranil Biswas", "Avijit Mukherjee" ], "comment": "A couple of typos corrected", "categories": [ "math.DG", "math-ph", "math.MP" ], "abstract": "In this continuation of \\cite{BM}, we prove the following: Let $\\Gamma\\subset \\text{SL}(2,{\\mathbb C})$ be a cocompact lattice, and let $\\rho: \\Gamma \\rightarrow \\text{GL}(r,{\\mathbb C})$ be an irreducible representation. Then the holomorphic vector bundle $E_\\rho \\longrightarrow \\text{SL}(2,{\\mathbb C})/\\Gamma$ associated to $\\rho$ is polystable. The compact complex manifold $\\text{SL}(2,{\\mathbb C})/\\Gamma$ has natural Hermitian structures; the polystability of $E_\\rho$ is with respect to these natural Hermitian structures.", "revisions": [ { "version": "v2", "updated": "2013-03-14T03:15:28.000Z" } ], "analyses": { "subjects": [ "81T30", "14D21", "53C07" ], "keywords": [ "vector bundles", "cocompact lattice", "irreducible representation", "natural hermitian structures", "compact complex manifold" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1303.3167B" } } }