{ "id": "1303.3099", "version": "v1", "published": "2013-03-13T07:08:53.000Z", "updated": "2013-03-13T07:08:53.000Z", "title": "Transitive cylinder flows whose set of discrete points is of full Hausdorff dimension", "authors": [ "Eugeniusz Dymek" ], "comment": "14 pages", "categories": [ "math.DS" ], "abstract": "For each irrational $\\alpha\\in[0,1)$ we construct a continuous function $f\\: [0,1)\\to \\R$ such that the corresponding cylindrical transformation $[0,1)\\times\\R \\ni (x,t) \\mapsto (x+\\alpha, t+ f(x)) \\in [0,1)\\times\\R$ is transitive and the Hausdorff dimension of the set of points whose orbits are discrete is 2. Such cylindrical transformations are shown to display a certain chaotic behaviour of Devaney-like type.", "revisions": [ { "version": "v1", "updated": "2013-03-13T07:08:53.000Z" } ], "analyses": { "subjects": [ "37B05", "37C45", "37C29" ], "keywords": [ "full hausdorff dimension", "transitive cylinder flows", "discrete points", "chaotic behaviour", "corresponding cylindrical transformation" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1303.3099D" } } }