{ "id": "1303.2443", "version": "v1", "published": "2013-03-11T07:42:28.000Z", "updated": "2013-03-11T07:42:28.000Z", "title": "Uniqueness and Lipschitz stability for the identification of Lamé parameters from boundary measurements", "authors": [ "Elena Beretta", "Elisa Francini", "Sergio Vessella" ], "categories": [ "math.AP" ], "abstract": "In this paper we consider the problem of determining an unknown pair $\\lambda$, $\\mu$ of piecewise constant Lam\\'{e} parameters inside a three dimensional body from the Dirichlet to Neumann map. We prove uniqueness and Lipschitz continuous dependence of $\\lambda$ and $\\mu$ from the Dirichlet to Neumann map.", "revisions": [ { "version": "v1", "updated": "2013-03-11T07:42:28.000Z" } ], "analyses": { "keywords": [ "boundary measurements", "lipschitz stability", "uniqueness", "identification", "neumann map" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1303.2443B" } } }