{ "id": "1303.2368", "version": "v2", "published": "2013-03-10T19:40:13.000Z", "updated": "2013-03-14T06:57:57.000Z", "title": "An ArzelĂ -Ascoli theorem for the Hausdorff measure of noncompactness", "authors": [ "Ben Berckmoes" ], "comment": "6 pages", "categories": [ "math.FA" ], "abstract": "We generalize the Arzel\\`a-Ascoli theorem in the space of continuous maps on a compact interval with values in Euclidean N-space by providing a quantitative link between the Hausdorff measure of noncompactness in this space and a natural measure of non-uniform equicontinuity. The proof hinges upon a classical result of Jung's on the Chebyshev radius.", "revisions": [ { "version": "v2", "updated": "2013-03-14T06:57:57.000Z" } ], "analyses": { "subjects": [ "46B50" ], "keywords": [ "hausdorff measure", "arzelĂ -ascoli theorem", "noncompactness", "chebyshev radius", "euclidean n-space" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable" } } }