{ "id": "1303.2069", "version": "v1", "published": "2013-03-08T18:08:58.000Z", "updated": "2013-03-08T18:08:58.000Z", "title": "Perfect squares have at most five divisors close to its square root", "authors": [ "Tsz Ho Chan" ], "comment": "4 pages", "categories": [ "math.NT" ], "abstract": "In this paper, we consider a conjecture of Erd\\H{o}s and Rosenfeld when the number is a perfect square. In particular, we show that every perfect square $n$ can have at most five divisors between $\\sqrt{n} - c \\sqrt[4]{n}$ and $\\sqrt{n} + c \\sqrt[4]{n}$.", "revisions": [ { "version": "v1", "updated": "2013-03-08T18:08:58.000Z" } ], "analyses": { "keywords": [ "perfect square", "divisors close", "square root" ], "note": { "typesetting": "TeX", "pages": 4, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1303.2069C" } } }