{ "id": "1303.1838", "version": "v1", "published": "2013-03-07T22:11:04.000Z", "updated": "2013-03-07T22:11:04.000Z", "title": "The Generalized Fibonacci and Lucas Solutions of The Pell Equations x^2-(a^2b^2-b)y^2=N and x^2-(a^2b^2-2b)y^2=N", "authors": [ "Bilge Peker", "Hasan Senay" ], "comment": "8 pages", "categories": [ "math.NT" ], "abstract": "In this study, we find continued fraction expansion of sqrt(d) when d=a^2b^2-b and d=a^2b^2-2b where a and b are positive integers. We consider the integer solutions of the Pell equations x^2-(a^2b^2-b)y^2=N and x^2-(a^2b^2-2b)y^2=N when N is {+-1,+-4}. We formulate the n-th solution (x_{n},y_{n}) by using the continued fraction expansion. We also formulate the n-th solution (x_{n},y_{n}) in terms of generalized Fibonacci and Lucas sequences.", "revisions": [ { "version": "v1", "updated": "2013-03-07T22:11:04.000Z" } ], "analyses": { "subjects": [ "11D09", "11D79", "11D45", "11A55", "11B39", "11B50", "11B99" ], "keywords": [ "pell equations", "generalized fibonacci", "lucas solutions", "continued fraction expansion", "n-th solution" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1303.1838P" } } }