{ "id": "1303.1364", "version": "v1", "published": "2013-03-06T15:51:12.000Z", "updated": "2013-03-06T15:51:12.000Z", "title": "On the tensor degree of finite groups", "authors": [ "Peyman Niroomand", "Francesco G. Russo" ], "comment": "10 pages, accepted in Ars Combinatoria with revisions", "categories": [ "math.GR", "math.AT", "math.CO" ], "abstract": "We study the number of elements $x$ and $y$ of a finite group $G$ such that $x \\otimes y= 1_{_{G \\otimes G}}$ in the nonabelian tensor square $G \\otimes G$ of $G$. This number, divided by $|G|^2$, is called the tensor degree of $G$ and has connection with the exterior degree, introduced few years ago in [P. Niroomand and R. Rezaei, On the exterior degree of finite groups, Comm. Algebra 39 (2011), 335--343]. The analysis of upper and lower bounds of the tensor degree allows us to find interesting structural restrictions for the whole group.", "revisions": [ { "version": "v1", "updated": "2013-03-06T15:51:12.000Z" } ], "analyses": { "subjects": [ "20D15", "20J99", "20D60", "20C25" ], "keywords": [ "finite group", "tensor degree", "exterior degree", "nonabelian tensor square", "lower bounds" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1303.1364N" } } }